Lecture 1 — Part 2

Some Basics

(January 9, 2015)

Mu Zhu
University of Waterloo




-

Regression

training data {(x;,y;);1=1,2,...,n}
x; € RYand y; € R
want f(-) so that we can predict y from x with f(x)

mean squared error,

MSE(f) = E[y — f(z)]*,

a common criterion for how good f is
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Let g(x) = E(y|x), and h(x) be any other function of x. Then,

y — h(z)]?
y— g(z) + g(x) — h(z)]?
Y — g(@)]? + Elg() — h(@)] +2E[(y — g(2))(9() — h(z))]
Ely — g(z)]*. _
4

main task for regression: “go after” the function, E(y|x)

\ EO=E

Exercise Show that E[(y — g(x))(g(x) — h(x))] = 0. (Hint: Use

E(|z)].) /
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/ Ex I: Linear Regression

e for z € R, can start by modelling E(y|z) as

f(x) =a+ pr

o further justification: E(y|x) linear in z if (x,y) have a joint

normal distribution
e just have to estimate o and [ from training data

o for x € RY, simply

fl@)=a+ 8"

-
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/ Ex II: Nearest-Neighbor Regression \

e may feel uncomfortable with assuming E(y|x) to be linear

e can choose to estimate E(y|x) by
E(ylz) = average{y; :x; € N(z)},

where M (x) denotes a “neighborhood” around x
e meaning of E(y|x): the average of y given a particular x
e almost literal interpretation of E(y|x)

e relaxes “given a particular &” to “within a neighborhood of x”

- /
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/ Ex II: Nearest-Neighbor Regression \

e for x € R, suppose

e can express estimate as

. [z — @

1 ;
2 ( A
=1
. [z — |

I 1
(s

E(ylz) =

e need to specity h a priori ... called a tuning parameter

. /
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/ Ex I1I: Kernel Regression

e can further generalize to

E(ylr) =

where K (u) is a kernel function such that

/K 1, /uK(u)du =0, /u2K(u)du < 00

e simple average vs weighted average

-

/
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/ Bias-Variance Analysis

e typical model assumption:

vi = fx;) + €

E(e;) =0, Var(e;) = o2, Cov(ei,ej) =0 for i # j

o let
() :
w; = nn so that f(x) = Z}wwZ
LK Ly — & 1=1
— nh h
7=1

\o further simplifying assumption: z; ~ Unif(0, 1)
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—1 ~0 ~h2[[ u? K (u)du]

Bias hx)} ~h2B, where By= % ' (z) [ / uQK(u)du]

_ Y,
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/ Variance
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Discussion \

h1t = bias 1T and variance J

hl = bias | and variance 7

Are these intuitively “obvious”?
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/ Some Details

First,

Z:wz(xZ —x) =

where

numerator & / (U ; x) K (v ; w) dv & h/uK(u)du —
and
_ 1 vV—x (%)
denommator%/EK( ; )dv = /K(u)du: 1.

\(*) u=(v—2x)/h, du=(1/h)dv
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Likewise,

where

and

numerator &~ / h (

-

denominator ~ 1

Some Details

(previous slide)

V—XT

h

V—XT

h

) (

) dv = h? / w? K (u)du.

/
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Some Details

Exercise Use the same argument to “show” that

S w? & n—lh UKZ(u)du].
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/ Bias-Variance Trade-Off
MSE(?) = E(}‘\_ f)2
= E[f - E(f) +E(f) - f)?
- EE[J?_ E(A)]iJFIE(f) - f]2j+2£E[(f— E(N)E(f) — f)]
Var A) Bias?(f)

Exercise Show that E[(f — E(f))(E(f) — f)] = 0.

-
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/ Bias-Variance Trade-Off

e for kernel regression,

Vo

MSE = Var + Bias® ~ h*B? + —
n

e can find the “optimal” h (in terms of the MSE):

d
—-MSE ~ AB2h® — — =0 = h*~O0(n /%)

e general phenomenon, not just for kernel regression

-
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/ Curse of Dimensionality \

For « € R%, neighborhood-based methods such as kernel regression
still apply (“just” use K (u) for u € R%) but they become
increasingly difficult.

Example Suppose data are uniformly distributed inside the unit
ball, {x : ||| < 1}. Consider a neighborhood around 0 with radius
h < 1. What fraction of data does the neighborhood contain?

d/2
hd
I(neighborh
(fraction of data) = vol(neig ‘bor 00d) = L(d/2+1) = h%.
vol(unit ball) md/2 d
['(d/2+1)

Thus, in d = 100 dimensions, even a neighborhood with radius

Q: 0.95 contains < 0.6% of the data. /
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Classification

training data {(x;,y;);1=1,2,...,n}
x; € R and y; € {1,2,..., K}
want f(-) so that we can classify y from x with f(x)

mean 0-1 error,

error(f) = E[I(y # f(x))],

a common criterion for how good f is
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4 P(yle) h

Exercise Show that the function that minimizes the mean 0-1

error 1S

f(x) = argmax P(y=k|x).
k=1,....K

4

main task for classification: “go after” the function, P(y|x)

Remark For binary y € {0, 1}, also have E(y|x) = P(y = 1|x).

- /
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Two Strategies

e “go after” P(y|x) directly

e use Bayes theorem,

TPk ()
mipi(x) + ... + Trpr ()’

P(y = klz) =

and “go after” P(y|x) indirectly by first “going after”

— pr(x), the conditional distribution of x|y = k, and

— 7, the prior probability of class k,

foreach k=1,...,. K
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/ Ex 1V: Logistic Regression

e for binary y € {0,1}, can model

exp{a + Bz}
1+exp{a+ Bz}

Ply=1lz) =

or, equivalently,

log y— ) _ a+B'x
= 0|x

e just have to estimate a and 3 from training data

-
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/ Ex V: Linear Discriminant Analysis \

e alternatively, can model

pr(x) ~ N(p,X), k=01

e recall multivariate normal density function

1 1

\/(2W)d|2‘eXP —5(513 - Hk)TE_l(fL‘ — )

pr(x) =

. /
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/ Ex V: Linear Discriminant Analysis

e then,
P(y = 1|z) T p1(x)
lo = =log— +1lo
S Py = Olz) “T0 U8 pol(w)
where
p1(x) 1 Ty —1
log ——(x — X (x—
po(w) [( l”’l) ( 1)

e just have to estimate w1, m, p1, by and 3 (actually, 2_1)

-

/
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Comparison

e slight rearrangement of the last equation from the previous

slide gives

Y= . —1 Ty —1
log —log—+ — = (uI= 'y, — pls
= 0lo) 5 (1 Z7 = 3 )

\ - 7

+ (1 —po)'E 'z

\ .

—
Ble

e linear discriminant analysis and logistic regression: two
different ways of “going after” the same, linear decision

boundary
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/ Which Is Better? \

B. Efron (1975), “The efficiency of logistic regression compared to
normal discriminant analysis”, JASA 70, pp. 892—898.
e n — 00; fixed d

e if p;. normal, logistic regression less efficient

e loss of efficiency between 1/3 to 1/2

. /
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/ Enter “Big Data” \

e if all this sounds easy, don’t forget X is d X d
e very hard for relatively large d

e X! can be estimated by the graphical LASSO (Friedman,
Hastie & Tibshirani, 2008; Biostatistics)

e Fan, Feng & Wu (2009; Ann. Appl. Stat.) applied

¢LLASSO-estimated X! to perform linear discriminant analysis

e Cai & Liu (2012; JASA) proposed to estimate
B =", — py) directly with sparsity constraints

Research Perform an analysis like that of Efron (1975) when

\d% oo as well. /
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Ex VI: Naive Bayes

may feel uncomfortable with assuming pg(x) ~ N(uy,, 33)

data scientists have long used (and still like) the model,

d
pr(@) = || frj(z;),
j=1
where each fi ;(-) can be estimated separately

especially helpful if the predictors are of mixed types (e.g.,

some continuous, some categorical)
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/ Ex VI: Naive Bayes \

e may feel uncomfortable with assuming independence

e but
d
P( l|x) [l J1,5(x;)
log = log — + log =
P(y = 0x) 0 ;\ fo.i(x5)
o g;i(x;5)
d

1]

Q

_|_
S
)
<

and most people comfortable with generalizing linear logistic

regression to additive logistic regression

. /
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Ex VI1I: Neural Networks

sigmoid function

u

o(u) = T+ on

hidden layer £ = 1,2, ..., L—1

40 — <agﬁ> + zwgfgzw)
b

top layer L
L
A =Py =1|...)
bottom layer 0

zéo) =xp, b=1,2,...,d

Fields Institute, Toronto, Canada © 2015 by Mu Zhu

30




/ Ex VIII: Nearest-Neighbor Classifier \

e can also estimate P(y|x) by

AN

Py = klx) = fraction{y; =k:x; € N(x)},

where N (x) denotes a “neighborhood” around x

. /
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/ Bayes Error \

Myth If my misclassification error is not very close to zero, my

classifier must not be very good.

Myth If I know the true model, my misclassification error must

be zero.

Truth Even if we knew P(y|x) (or px(x), 7, ...) perfectly, we
might still have considerable misclassification error — these errors

are called the Bayes error.

. /
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/ Bayes Error \

p(x)  pax)
r € R
T =79 = 1/2
pi(z) ~ N(p1,07)
po(x) ~ N(o, 0°)

Bayes Error

Exercise How does the Bayes error change with A = |1 — uol,
and with ¢27?

Question Can we reduce the Bayes error?

. /
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/ Summary

e key ideas:
— regression; mean squared error; E(y|x)
— bias-variance trade-off; curse of dimensionality

— classification; mean 0-1 error; P(y|x); Bayes error

e specific methods:
— linear regression; nearest-neighbors; kernel regression
— logistic regression; linear discriminant analysis

— nailve Bayes; neural network
— graphical LASSO

e didn’t discuss:

\ — actual estimation procedures
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Next ...

e course administration, logistics, etc
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