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Some Basics
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Regression

• training data {(xi, yi); i = 1, 2, ..., n}

• xi ∈ R
d and yi ∈ R

• want f(·) so that we can predict y from x with f(x)

• mean squared error,

MSE(f) = E[y − f(x)]2,

a common criterion for how good f is
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E(y|x)

Let g(x) = E(y|x), and h(x) be any other function of x. Then,

E[y − h(x)]2

= E[y − g(x) + g(x)− h(x)]2

= E[y − g(x)]2 + E[g(x)− h(x)]2︸ ︷︷ ︸
≥0

+2E[(y − g(x))(g(x)− h(x))]︸ ︷︷ ︸
=0

≥ E[y − g(x)]2.

⇓

main task for regression: “go after” the function, E(y|x)

Exercise Show that E[(y − g(x))(g(x)− h(x))] = 0. (Hint: Use

E(·) = E[E(·|x)].)
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Ex I: Linear Regression

• for x ∈ R, can start by modelling E(y|x) as

f(x) = α+ βx

• further justification: E(y|x) linear in x if (x, y) have a joint

normal distribution

• just have to estimate α and β from training data

• for x ∈ R
d, simply

f(x) = α+ βTx
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Ex II: Nearest-Neighbor Regression

• may feel uncomfortable with assuming E(y|x) to be linear

• can choose to estimate E(y|x) by

Ê(y|x) = average {yi : xi ∈ N (x)} ,

where N (x) denotes a “neighborhood” around x

• meaning of E(y|x): the average of y given a particular x

• almost literal interpretation of E(y|x)

• relaxes “given a particular x” to “within a neighborhood of x”
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Ex II: Nearest-Neighbor Regression

• for x ∈ R, suppose

N (x) =

{
xi :

|xi − x|

h
< 1

}

• can express estimate as

Ê(y|x) =

n∑

i=1

I

(
|xi − x|

h
< 1

)
yi

n∑

i=1

I

(
|xi − x|

h
< 1

)

• need to specify h a priori ... called a tuning parameter
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Ex III: Kernel Regression

• can further generalize to

Ê(y|x) =

n∑

i=1

1

nh
K

(
xi − x

h

)
yi

n∑

i=1

1

nh
K

(
xi − x

h

) ,

where K(u) is a kernel function such that
∫

K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du < ∞

• simple average vs weighted average
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2I(|u| < 1); (b) K(u) = 1√

2π
e−u2/2.
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Bias-Variance Analysis

• typical model assumption:

yi = f(xi) + εi

E(εi) = 0, Var(εi) = σ2, Cov(εi, εj) = 0 for i 6= j

• let

wi =

1

nh
K

(
xi − x

h

)

n∑

j=1

1

nh
K

(
xj − x

h

) so that f̂(x) =
n∑

i=1

wiyi

• further simplifying assumption: xi ∼ Unif(0, 1)
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Bias

f̂(x) =
∑

wiyi ⇒ E

[
f̂(x)

]
=
∑

wiE(yi) =
∑

wif(xi)

f(xi) ≈ f(x) + (xi − x)f
′

(x) +
1

2
(xi − x)2f

′′

(x)

⇓

E

[
f̂(x)

]
≈

f(x)
∑

wi
︸ ︷︷ ︸

=1

+f
′

(x)
∑

wi(xi − x)
︸ ︷︷ ︸

≈0

+
1

2
f

′′

(x)
∑

wi(xi − x)2

︸ ︷︷ ︸
≈h2[

∫
u2K(u)du]

∴ Bias
[
f̂(x)

]
≈ h2B0 where B0 =

1

2
f

′′

(x)

[∫
u2K(u)du

]
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Variance

f̂(x) =
∑

wiyi ⇒

Var
[
f̂(x)

]
=
∑

w2
iVar(yi) = σ2

[∑
w2

i

]

︸ ︷︷ ︸
≈ 1

nh
[
∫
K2(u)du]

∴ Var
[
f̂(x)

]
≈

1

nh
V0 where V0 = σ2

[∫
K2(u)du

]
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Discussion

h ↑ ⇒ bias ↑ and variance ↓

h ↓ ⇒ bias ↓ and variance ↑

Are these intuitively “obvious”?
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Some Details

First,

∑
wi(xi − x) =

∑ 1

nh
K

(
xi − x

h

)
(xi − x)

∑ 1

nh
K

(
xi − x

h

) ,

where

numerator ≈

∫ (
v − x

h

)
K

(
v − x

h

)
dv

(∗)
= h

∫
uK(u)du = 0,

and

denominator ≈

∫
1

h
K

(
v − x

h

)
dv

(∗)
=

∫
K(u)du = 1.

(*) u = (v − x)/h, du = (1/h)dv
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Some Details

Likewise,

∑
wi(xi − x)2 =

∑ 1

nh
K

(
xi − x

h

)
(xi − x)2

∑ 1

nh
K

(
xi − x

h

) ,

where

denominator ≈ 1 (previous slide)

and

numerator ≈

∫
h

(
v − x

h

)2

K

(
v − x

h

)
dv = h2

∫
u2K(u)du.
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Some Details

Exercise Use the same argument to “show” that

∑
w2

i ≈
1

nh

[∫
K2(u)du

]
.
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Bias-Variance Trade-Off

MSE(f̂) ≡ E(f̂ − f)2

= E[f̂ − E(f̂) + E(f̂)− f ]2

= E[f̂ − E(f̂)]2︸ ︷︷ ︸
Var(f̂)

+ [E(f̂)− f ]2︸ ︷︷ ︸
Bias2(f̂)

+2E[(f̂ − E(f̂))(E(f̂)− f)]︸ ︷︷ ︸
=0

Exercise Show that E[(f̂ − E(f̂))(E(f̂)− f)] = 0.
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Bias-Variance Trade-Off

• for kernel regression,

MSE = Var + Bias2 ≈ h4B2
0 +

V0

nh

• can find the “optimal” h (in terms of the MSE):

d

dh
MSE ≈ 4B2

0h
3 −

V0

nh2
= 0 ⇒ h∗ ∼ O(n−1/5)

• general phenomenon, not just for kernel regression
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Curse of Dimensionality

For x ∈ R
d, neighborhood-based methods such as kernel regression

still apply (“just” use K(u) for u ∈ R
d) but they become

increasingly difficult.

Example Suppose data are uniformly distributed inside the unit

ball, {x : ‖x‖ ≤ 1}. Consider a neighborhood around 0 with radius

h < 1. What fraction of data does the neighborhood contain?

(fraction of data) =
vol(neighborhood)

vol(unit ball)
=

πd/2

Γ(d/2 + 1)
hd

πd/2

Γ(d/2 + 1)
1d

= hd.

Thus, in d = 100 dimensions, even a neighborhood with radius

h = 0.95 contains < 0.6% of the data.
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Classification

• training data {(xi, yi); i = 1, 2, ..., n}

• xi ∈ R
d and yi ∈ {1, 2, ..., K}

• want f(·) so that we can classify y from x with f(x)

• mean 0-1 error,

error(f) = E[I(y 6= f(x))],

a common criterion for how good f is
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P(y|x)

Exercise Show that the function that minimizes the mean 0-1

error is

f(x) = argmax
k=1,...,K

P(y = k|x).

⇓

main task for classification: “go after” the function, P(y|x)

Remark For binary y ∈ {0, 1}, also have E(y|x) = P(y = 1|x).
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Two Strategies

• “go after” P(y|x) directly

• use Bayes theorem,

P(y = k|x) =
πkpk(x)

π1p1(x) + ...+ πKpK(x)
,

and “go after” P(y|x) indirectly by first “going after”

– pk(x), the conditional distribution of x|y = k, and

– πk, the prior probability of class k,

for each k = 1, ..., K
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Ex IV: Logistic Regression

• for binary y ∈ {0, 1}, can model

P(y = 1|x) =
exp{α+ βTx}

1 + exp{α+ βTx}
,

or, equivalently,

log
P(y = 1|x)

P(y = 0|x)
= α+ βTx

• just have to estimate α and β from training data
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Ex V: Linear Discriminant Analysis

• alternatively, can model

pk(x) ∼ N(µk,Σ), k = 0, 1

• recall multivariate normal density function

pk(x) =
1√

(2π)d|Σ|
exp

[
−
1

2
(x− µk)

TΣ−1(x− µk)

]
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Ex V: Linear Discriminant Analysis

• then,

log
P(y = 1|x)

P(y = 0|x)
= = log

π1

π0
+ log

p1(x)

p0(x)

where

log
p1(x)

p0(x)
= −

1

2
[(x− µ1)

TΣ−1(x− µ1)

− (x− µ0)
TΣ−1(x− µ0)]

• just have to estimate π1, π0,µ1,µ0 and Σ (actually, Σ−1)
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Comparison

• slight rearrangement of the last equation from the previous

slide gives

log
P(y = 1|x)

P(y = 0|x)
= log

π1

π0
−

1

2

(
µT

1Σ
−1µ1 − µT

0Σ
−1µ0

)

︸ ︷︷ ︸
α

+ (µ1 − µ0)
TΣ−1x︸ ︷︷ ︸

βTx

• linear discriminant analysis and logistic regression: two

different ways of “going after” the same, linear decision

boundary
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Which Is Better?

B. Efron (1975), “The efficiency of logistic regression compared to

normal discriminant analysis”, JASA 70, pp. 892–898.

• n → ∞; fixed d

• if pk normal, logistic regression less efficient

• loss of efficiency between 1/3 to 1/2
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Enter “Big Data”

• if all this sounds easy, don’t forget Σ is d× d

• very hard for relatively large d

• Σ−1 can be estimated by the graphical LASSO (Friedman,

Hastie & Tibshirani, 2008; Biostatistics)

• Fan, Feng & Wu (2009; Ann. Appl. Stat.) applied

gLASSO-estimated Σ−1 to perform linear discriminant analysis

• Cai & Liu (2012; JASA) proposed to estimate

β ≡ Σ−1(µ1 − µ0) directly with sparsity constraints

Research Perform an analysis like that of Efron (1975) when

d → ∞ as well.
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Ex VI: Näıve Bayes

• may feel uncomfortable with assuming pk(x) ∼ N(µk,Σ)

• data scientists have long used (and still like) the model,

pk(x) =
d∏

j=1

fk,j(xj),

where each fk,j(·) can be estimated separately

• especially helpful if the predictors are of mixed types (e.g.,

some continuous, some categorical)
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Ex VI: Näıve Bayes

• may feel uncomfortable with assuming independence

• but

log
P(y = 1|x)

P(y = 0|x)
= log

π1

π0︸ ︷︷ ︸
α

+

d∑

j=1

log
f1,j(xj)

f0,j(xj)︸ ︷︷ ︸
gj(xj)

≡ α+
d∑

j=1

gj(xj),

and most people comfortable with generalizing linear logistic

regression to additive logistic regression
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Ex VII: Neural Networks

• sigmoid function

σ(u) =
eu

1 + eu

• hidden layer ℓ = 1, 2, ..., L−1

z
(ℓ)
t = σ

(
α
(ℓ)
t +

∑

b

w
(ℓ)
t,b z

(ℓ−1)
b

)

• top layer L

z
(L)
t = P(y = t|...)

• bottom layer 0

z
(0)
b = xb, b = 1, 2, ..., d

inputs

output

Fields Institute, Toronto, Canada © 2015 by Mu Zhu 30



'

&

$

%

Ex VIII: Nearest-Neighbor Classifier

• can also estimate P(y|x) by

P̂(y = k|x) = fraction {yi = k : xi ∈ N (x)} ,

where N (x) denotes a “neighborhood” around x
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Bayes Error

Myth If my misclassification error is not very close to zero, my

classifier must not be very good.

Myth If I know the true model, my misclassification error must

be zero.

Truth Even if we knew P(y|x) (or pk(x), πk, ...) perfectly, we

might still have considerable misclassification error — these errors

are called the Bayes error.
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Bayes Error

x ∈ R

π1 = π0 = 1/2

p1(x) ∼ N(µ1, σ
2)

p0(x) ∼ N(µ0, σ
2)

Bayes Error

p1(x) p2(x)

Exercise How does the Bayes error change with ∆ ≡ |µ1 − µ0|,

and with σ2?

Question Can we reduce the Bayes error?
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Summary

• key ideas:

– regression; mean squared error; E(y|x)

– bias-variance trade-off; curse of dimensionality

– classification; mean 0-1 error; P(y|x); Bayes error

• specific methods:

– linear regression; nearest-neighbors; kernel regression

– logistic regression; linear discriminant analysis

– näıve Bayes; neural network

– graphical LASSO

• didn’t discuss:

– actual estimation procedures
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Next ...

• course administration, logistics, etc
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