Lecture 1 - Part 2 Some Basics

(January 9, 2015)

Mu Zhu
University of Waterloo

Regression

- training data $\left\{\left(\boldsymbol{x}_{i}, y_{i}\right) ; i=1,2, \ldots, n\right\}$
- $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in \mathbb{R}$
- want $f(\cdot)$ so that we can predict y from \boldsymbol{x} with $f(\boldsymbol{x})$
- mean squared error,

$$
\operatorname{MSE}(f)=\mathbb{E}[y-f(\boldsymbol{x})]^{2},
$$

a common criterion for how good f is

$\mathbb{E}(y \mid \boldsymbol{x})$

Let $g(\boldsymbol{x})=\mathbb{E}(y \mid \boldsymbol{x})$, and $h(\boldsymbol{x})$ be any other function of \boldsymbol{x}. Then,

$$
\begin{aligned}
& \mathbb{E}[y-h(\boldsymbol{x})]^{2} \\
= & \mathbb{E}[y-g(\boldsymbol{x})+g(\boldsymbol{x})-h(\boldsymbol{x})]^{2} \\
= & \mathbb{E}[y-g(\boldsymbol{x})]^{2}+\underbrace{\mathbb{E}[g(\boldsymbol{x})-h(\boldsymbol{x})]^{2}}_{\geq 0}+2 \underbrace{\mathbb{E}[(y-g(\boldsymbol{x}))(g(\boldsymbol{x})-h(\boldsymbol{x}))]}_{=0}
\end{aligned}
$$

$$
\geq \mathbb{E}[y-g(\boldsymbol{x})]^{2}
$$

$\underline{\text { main task for regression: "go after" the function, } \mathbb{E}(y \mid x)}$

Exercise Show that $\mathbb{E}[(y-g(\boldsymbol{x}))(g(\boldsymbol{x})-h(\boldsymbol{x}))]=0$. (Hint: Use $\mathbb{E}(\cdot)=\mathbb{E}[\mathbb{E}(\cdot \mid \boldsymbol{x})]$.

Ex I: Linear Regression

- for $x \in \mathbb{R}$, can start by modelling $\mathbb{E}(y \mid x)$ as

$$
f(x)=\alpha+\beta x
$$

- further justification: $\mathbb{E}(y \mid x)$ linear in x if (x, y) have a joint normal distribution
- just have to estimate α and β from training data
- for $\boldsymbol{x} \in \mathbb{R}^{d}$, simply

$$
f(\boldsymbol{x})=\alpha+\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{x}
$$

Ex II: Nearest-Neighbor Regression

- may feel uncomfortable with assuming $\mathbb{E}(y \mid \boldsymbol{x})$ to be linear
- can choose to estimate $\mathbb{E}(y \mid \boldsymbol{x})$ by

$$
\widehat{\mathbb{E}}(y \mid \boldsymbol{x})=\text { average }\left\{y_{i}: \boldsymbol{x}_{i} \in \mathcal{N}(\boldsymbol{x})\right\}
$$

where $\mathcal{N}(\boldsymbol{x})$ denotes a "neighborhood" around \boldsymbol{x}

- meaning of $\mathbb{E}(y \mid \boldsymbol{x})$: the average of y given a particular \boldsymbol{x}
- almost literal interpretation of $\mathbb{E}(y \mid \boldsymbol{x})$
- relaxes "given a particular x " to "within a neighborhood of x "

Ex II: Nearest-Neighbor Regression

- for $x \in \mathbb{R}$, suppose

$$
\mathcal{N}(x)=\left\{x_{i}: \frac{\left|x_{i}-x\right|}{h}<1\right\}
$$

- can express estimate as

$$
\widehat{\mathbb{E}}(y \mid x)=\frac{\sum_{i=1}^{n} I\left(\frac{\left|x_{i}-x\right|}{h}<1\right) y_{i}}{\sum_{i=1}^{n} I\left(\frac{\left|x_{i}-x\right|}{h}<1\right)}
$$

- need to specify h a priori ... called a tuning parameter

Ex III: Kernel Regression

- can further generalize to

$$
\widehat{\mathbb{E}}(y \mid x)=\frac{\sum_{i=1}^{n} \frac{1}{n h} K\left(\frac{x_{i}-x}{h}\right) y_{i}}{\sum_{i=1}^{n} \frac{1}{n h} K\left(\frac{x_{i}-x}{h}\right)}
$$

where $K(u)$ is a kernel function such that

$$
\int K(u) d u=1, \quad \int u K(u) d u=0, \quad \int u^{2} K(u) d u<\infty
$$

- simple average vs weighted average

(a) $K(u)=\frac{1}{2} I(|u|<1) ;(\mathrm{b}) K(u)=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2}$.

Bias-Variance Analysis

- typical model assumption:

$$
\begin{gathered}
y_{i}=f\left(x_{i}\right)+\varepsilon_{i} \\
\mathbb{E}\left(\varepsilon_{i}\right)=0, \quad \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}, \quad \operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0 \text { for } i \neq j
\end{gathered}
$$

- let

$$
w_{i}=\frac{\frac{1}{n h} K\left(\frac{x_{i}-x}{h}\right)}{\sum_{j=1}^{n} \frac{1}{n h} K\left(\frac{x_{j}-x}{h}\right)} \quad \text { so that } \quad \widehat{f}(x)=\sum_{i=1}^{n} w_{i} y_{i}
$$

- further simplifying assumption: $x_{i} \sim \operatorname{Unif}(0,1)$

Bias

$$
\begin{gathered}
\widehat{f}(x)=\sum w_{i} y_{i} \Rightarrow \mathbb{E}[\widehat{f}(x)]=\sum w_{i} \mathbb{E}\left(y_{i}\right)=\sum w_{i} f\left(x_{i}\right) \\
f\left(x_{i}\right) \approx f(x)+\left(x_{i}-x\right) f^{\prime}(x)+\frac{1}{2}\left(x_{i}-x\right)^{2} f^{\prime \prime}(x)
\end{gathered}
$$

$$
\mathbb{E}[\widehat{f}(x)] \approx
$$

$$
f(x) \underbrace{\sum w_{i}}_{=1}+f^{\prime}(x) \underbrace{\sum w_{i}\left(x_{i}-x\right)}_{\approx 0}+\frac{1}{2} f^{\prime \prime}(x) \underbrace{\sum w_{i}\left(x_{i}-x\right)^{2}}_{\approx h^{2}\left[\int u^{2} K(u) d u\right]}
$$

$\therefore \quad \operatorname{Bias}[\widehat{f}(x)] \approx h^{2} B_{0} \quad$ where $\quad B_{0}=\frac{1}{2} f^{\prime \prime}(x)\left[\int u^{2} K(u) d u\right]$

Variance

$$
\begin{aligned}
& \widehat{f}(x)=\sum w_{i} y_{i} \Rightarrow \\
& \mathbb{V} \operatorname{ar}[\widehat{f}(x)]=\sum w_{i}^{2} \mathbb{V} \operatorname{ar}\left(y_{i}\right)=\sigma^{2} \underbrace{\left[\sum w_{i}^{2}\right]}_{\approx \frac{1}{n h}\left[\int K^{2}(u) d u\right]} \\
& \therefore \quad \operatorname{Var}[\widehat{f}(x)] \approx \frac{1}{n h} V_{0} \quad \text { where } \quad V_{0}=\sigma^{2}\left[\int K^{2}(u) d u\right]
\end{aligned}
$$

Discussion

$$
\begin{aligned}
& h \uparrow \Rightarrow \text { bias } \uparrow \text { and variance } \downarrow \\
& h \downarrow \Rightarrow \text { bias } \downarrow \text { and variance } \uparrow
\end{aligned}
$$

Are these intuitively "obvious"?

Some Details

First,

$$
\sum w_{i}\left(x_{i}-x\right)=\frac{\sum \frac{1}{n h} K\left(\frac{x_{i}-x}{h}\right)\left(x_{i}-x\right)}{\sum \frac{1}{n h} K\left(\frac{x_{i}-x}{h}\right)}
$$

where

$$
\text { numerator } \approx \int\left(\frac{v-x}{h}\right) K\left(\frac{v-x}{h}\right) d v \stackrel{(*)}{=} h \int u K(u) d u=0
$$

and

$$
\text { denominator } \approx \int \frac{1}{h} K\left(\frac{v-x}{h}\right) d v \stackrel{(*)}{=} \int K(u) d u=1
$$

$\left.{ }^{*}\right) u=(v-x) / h, d u=(1 / h) d v$

Some Details

Likewise,

$$
\sum w_{i}\left(x_{i}-x\right)^{2}=\frac{\sum \frac{1}{n h} K\left(\frac{x_{i}-x}{h}\right)\left(x_{i}-x\right)^{2}}{\sum \frac{1}{n h} K\left(\frac{x_{i}-x}{h}\right)}
$$

where

$$
\text { denominator } \approx 1 \quad \text { (previous slide })
$$

and

$$
\text { numerator } \approx \int h\left(\frac{v-x}{h}\right)^{2} K\left(\frac{v-x}{h}\right) d v=h^{2} \int u^{2} K(u) d u
$$

Some Details

Exercise Use the same argument to "show" that

$$
\sum w_{i}^{2} \approx \frac{1}{n h}\left[\int K^{2}(u) d u\right]
$$

Bias-Variance Trade-Off

$$
\begin{aligned}
\operatorname{MSE}(\widehat{f}) & \equiv \mathbb{E}(\widehat{f}-f)^{2} \\
& =\mathbb{E}[\widehat{f}-\mathbb{E}(\widehat{f})+\mathbb{E}(\widehat{f})-f]^{2} \\
& =\underbrace{\mathbb{E}[\widehat{f}-\mathbb{E}(\widehat{f})]^{2}}_{\operatorname{Var}(\widehat{f})}+\underbrace{[\mathbb{E}(\widehat{f})-f]^{2}}_{\operatorname{Bias}^{2}(\widehat{f})}+2 \underbrace{\mathbb{E}[(\widehat{f}-\mathbb{E}(\widehat{f}))(\mathbb{E}(\widehat{f})-f)]}_{=0}
\end{aligned}
$$

Exercise Show that $\mathbb{E}[(\widehat{f}-\mathbb{E}(\widehat{f}))(\mathbb{E}(\widehat{f})-f)]=0$.

Bias-Variance Trade-Off

- for kernel regression,

$$
\mathrm{MSE}=\operatorname{Var}+\operatorname{Bias}^{2} \approx h^{4} B_{0}^{2}+\frac{V_{0}}{n h}
$$

- can find the "optimal" h (in terms of the MSE):

$$
\frac{d}{d h} \mathrm{MSE} \approx 4 B_{0}^{2} h^{3}-\frac{V_{0}}{n h^{2}}=0 \quad \Rightarrow \quad h^{*} \sim O\left(n^{-1 / 5}\right)
$$

- general phenomenon, not just for kernel regression

Curse of Dimensionality

For $\boldsymbol{x} \in \mathbb{R}^{d}$, neighborhood-based methods such as kernel regression still apply ("just" use $K(\boldsymbol{u})$ for $\boldsymbol{u} \in \mathbb{R}^{d}$) but they become increasingly difficult.

Example Suppose data are uniformly distributed inside the unit ball, $\{\boldsymbol{x}:\|\boldsymbol{x}\| \leq 1\}$. Consider a neighborhood around $\mathbf{0}$ with radius $h<1$. What fraction of data does the neighborhood contain?

$$
(\text { fraction of data })=\frac{\operatorname{vol}(\text { neighborhood })}{\operatorname{vol}(\text { unit ball })}=\frac{\frac{\pi^{d / 2}}{\Gamma(d / 2+1)} h^{d}}{\frac{\pi^{d / 2}}{\Gamma(d / 2+1)} 1^{d}}=h^{d} .
$$

Thus, in $d=100$ dimensions, even a neighborhood with radius $h=0.95$ contains $<0.6 \%$ of the data.

Classification

- training data $\left\{\left(\boldsymbol{x}_{i}, y_{i}\right) ; i=1,2, \ldots, n\right\}$
- $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in\{1,2, \ldots, K\}$
- want $f(\cdot)$ so that we can classify y from \boldsymbol{x} with $f(\boldsymbol{x})$
- mean 0-1 error,

$$
\operatorname{error}(f)=\mathbb{E}[I(y \neq f(\boldsymbol{x}))],
$$

a common criterion for how good f is

$$
\mathbb{P}(y \mid \boldsymbol{x})
$$

Exercise Show that the function that minimizes the mean 0-1 error is

$$
f(\boldsymbol{x})=\underset{k=1, \ldots, K}{\arg \max } \mathbb{P}(y=k \mid \boldsymbol{x}) .
$$

\Downarrow $\underline{\text { main task for classification: "go after" the function, } \mathbb{P}(y \mid x)}$

Remark For binary $y \in\{0,1\}$, also have $\mathbb{E}(y \mid \boldsymbol{x})=\mathbb{P}(y=1 \mid \boldsymbol{x})$.

Two Strategies

- "go after" $\mathbb{P}(y \mid \boldsymbol{x}) \underline{\text { directly }}$
- use Bayes theorem,

$$
\mathbb{P}(y=k \mid \boldsymbol{x})=\frac{\pi_{k} p_{k}(\boldsymbol{x})}{\pi_{1} p_{1}(\boldsymbol{x})+\ldots+\pi_{K} p_{K}(\boldsymbol{x})}
$$

and "go after" $\mathbb{P}(y \mid \boldsymbol{x})$ indirectly by first "going after"

- $p_{k}(\boldsymbol{x})$, the conditional distribution of $\boldsymbol{x} \mid \boldsymbol{y}=k$, and
$-\pi_{k}$, the prior probability of class k,
for each $k=1, \ldots, K$

Ex IV: Logistic Regression

- for binary $y \in\{0,1\}$, can model

$$
\mathbb{P}(y=1 \mid \boldsymbol{x})=\frac{\exp \left\{\alpha+\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{x}\right\}}{1+\exp \left\{\alpha+\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{x}\right\}}
$$

or, equivalently,

$$
\log \frac{\mathbb{P}(y=1 \mid \boldsymbol{x})}{\mathbb{P}(y=0 \mid \boldsymbol{x})}=\alpha+\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{x}
$$

- just have to estimate α and $\boldsymbol{\beta}$ from training data

Ex V: Linear Discriminant Analysis

- alternatively, can model

$$
p_{k}(\boldsymbol{x}) \sim \mathrm{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}\right), \quad k=0,1
$$

- recall multivariate normal density function

$$
p_{k}(\boldsymbol{x})=\frac{1}{\sqrt{(2 \pi)^{d}|\boldsymbol{\Sigma}|}} \exp \left[-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{k}\right)\right]
$$

Ex V: Linear Discriminant Analysis

- then,

$$
\log \frac{\mathbb{P}(y=1 \mid \boldsymbol{x})}{\mathbb{P}(y=0 \mid \boldsymbol{x})}==\log \frac{\pi_{1}}{\pi_{0}}+\log \frac{p_{1}(\boldsymbol{x})}{p_{0}(\boldsymbol{x})}
$$

where

$$
\begin{aligned}
\log \frac{p_{1}(\boldsymbol{x})}{p_{0}(\boldsymbol{x})}=-\frac{1}{2}\left[\left(\boldsymbol{x}-\boldsymbol{\mu}_{1}\right)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\right. & \left.\boldsymbol{x}-\boldsymbol{\mu}_{1}\right) \\
& \left.-\left(\boldsymbol{x}-\boldsymbol{\mu}_{0}\right)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{0}\right)\right]
\end{aligned}
$$

- just have to estimate $\pi_{1}, \pi_{0}, \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{0}$ and $\boldsymbol{\Sigma}\left(\right.$ actually, $\left.\boldsymbol{\Sigma}^{-1}\right)$

Comparison

- slight rearrangement of the last equation from the previous slide gives

$$
\begin{aligned}
& \log \frac{\mathbb{P}(y=1 \mid \boldsymbol{x})}{\mathbb{P}(y=0 \mid \boldsymbol{x})}=\underbrace{\log \frac{\pi_{1}}{\pi_{0}}-\frac{1}{2}\left(\boldsymbol{\mu}_{1}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{0}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{0}\right)}_{\alpha} \\
&+\underbrace{\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{0}\right)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}}_{\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{x}}
\end{aligned}
$$

- linear discriminant analysis and logistic regression: two different ways of "going after" the same, linear decision boundary

Which Is Better?

B. Efron (1975), "The efficiency of logistic regression compared to normal discriminant analysis", JASA 70, pp. 892-898.

- $n \rightarrow \infty$; fixed d
- if p_{k} normal, logistic regression less efficient
- loss of efficiency between $1 / 3$ to $1 / 2$

Enter "Big Data"

- if all this sounds easy, don't forget $\boldsymbol{\Sigma}$ is $d \times d$
- very hard for relatively large d
- $\boldsymbol{\Sigma}^{-1}$ can be estimated by the graphical LASSO (Friedman, Hastie \& Tibshirani, 2008; Biostatistics)
- Fan, Feng \& Wu (2009; Ann. Appl. Stat.) applied gLASSO-estimated $\boldsymbol{\Sigma}^{-1}$ to perform linear discriminant analysis
- Cai \& Liu (2012; JASA) proposed to estimate $\boldsymbol{\beta} \equiv \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{0}\right)$ directly with sparsity constraints

Research Perform an analysis like that of Efron (1975) when $d \rightarrow \infty$ as well.

Ex VI: Naïve Bayes

- may feel uncomfortable with assuming $p_{k}(\boldsymbol{x}) \sim \mathrm{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}\right)$
- data scientists have long used (and still like) the model,

$$
p_{k}(\boldsymbol{x})=\prod_{j=1}^{d} f_{k, j}\left(x_{j}\right)
$$

where each $f_{k, j}(\cdot)$ can be estimated separately

- especially helpful if the predictors are of mixed types (e.g., some continuous, some categorical)

Ex VI: Naïve Bayes

- may feel uncomfortable with assuming independence
- but

$$
\begin{aligned}
\log \frac{\mathbb{P}(y=1 \mid \boldsymbol{x})}{\mathbb{P}(y=0 \mid \boldsymbol{x})} & =\underbrace{\log \frac{\pi_{1}}{\pi_{0}}}_{\alpha}+\sum_{j=1}^{d} \underbrace{\log \frac{f_{1, j}\left(x_{j}\right)}{f_{0, j}\left(x_{j}\right)}}_{g_{j}\left(x_{j}\right)} \\
& \equiv \alpha+\sum_{j=1}^{d} g_{j}\left(x_{j}\right),
\end{aligned}
$$

and most people comfortable with generalizing linear logistic regression to additive logistic regression

Ex VII: Neural Networks

- sigmoid function

$$
\sigma(u)=\frac{e^{u}}{1+e^{u}}
$$

- hidden layer $\ell=1,2, \ldots, L-1$

$$
z_{t}^{(\ell)}=\sigma\left(\alpha_{t}^{(\ell)}+\sum_{b} w_{t, b}^{(\ell)} z_{b}^{(\ell-1)}\right)
$$

- top layer L

$$
z_{t}^{(L)}=\mathbb{P}(y=t \mid \ldots)
$$

- bottom layer 0

$$
z_{b}^{(0)}=x_{b}, \quad b=1,2, \ldots, d
$$

Ex VIII: Nearest-Neighbor Classifier

- can also estimate $\mathbb{P}(y \mid \boldsymbol{x})$ by

$$
\widehat{\mathbb{P}}(y=k \mid \boldsymbol{x})=\text { fraction }\left\{y_{i}=k: \boldsymbol{x}_{i} \in \mathcal{N}(\boldsymbol{x})\right\},
$$

where $\mathcal{N}(\boldsymbol{x})$ denotes a "neighborhood" around \boldsymbol{x}

Bayes Error

Myth If my misclassification error is not very close to zero, my classifier must not be very good.

Myth If I know the true model, my misclassification error must be zero.

Truth Even if we knew $\mathbb{P}(y \mid \boldsymbol{x})$ (or $p_{k}(\boldsymbol{x}), \pi_{k}, \ldots$) perfectly, we might still have considerable misclassification error - these errors are called the Bayes error.

Bayes Error

$$
\begin{gathered}
x \in \mathbb{R} \\
\pi_{1}=\pi_{0}=1 / 2 \\
p_{1}(x) \sim \mathrm{N}\left(\mu_{1}, \sigma^{2}\right) \\
p_{0}(x) \sim \mathrm{N}\left(\mu_{0}, \sigma^{2}\right)
\end{gathered}
$$

Exercise How does the Bayes error change with $\Delta \equiv\left|\mu_{1}-\mu_{0}\right|$, and with σ^{2} ?

Question Can we reduce the Bayes error?

Summary

- key ideas:
- regression; mean squared error; $\mathbb{E}(y \mid \boldsymbol{x})$
- bias-variance trade-off; curse of dimensionality
- classification; mean 0-1 error; $\mathbb{P}(y \mid \boldsymbol{x})$; Bayes error
- specific methods:
- linear regression; nearest-neighbors; kernel regression
- logistic regression; linear discriminant analysis
- naïve Bayes; neural network
- graphical LASSO
- didn't discuss:
- actual estimation procedures

Next ...

- course administration, logistics, etc

